Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Özlem Deveci, ${ }^{\text {a }}$ * Samil Isık, ${ }^{\text {a }}$ Metin Yavuz, ${ }^{\text {a }}$ Nesuhi Akdemir, ${ }^{\text {b }}$ Erbil Ağar ${ }^{\text {b }}$ and Cihan Kantar ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit-Samsun, Turkey, and ${ }^{\mathbf{b}}$ Ondokuz Mayıs University, Arts and Science Faculty, Department of Chemistry, 55139 Samsun, Turkey

Correspondence e-mail: odeveci@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.065$
$w R$ factor $=0.186$
Data-to-parameter ratio $=17.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1,3-Bis(3,4-dicyanophenoxy)benzene

The title compound, $\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$, has been designed and synthesized as a precursor of dye pigments.

Comment

The title compound, (I), is a precursor in the synthesis of network polymeric phthalocyanines and high-performance aromatic polymers (McKeown, 1998; Takekoshi, 1987). Phthalocyanines are traditionally used as dyes and pigments (Moser \& Thomas, 1983). They belong to an interesting class of compounds with increasingly diverse industrial and biomedical applications, including photosensitization, linear optics, catalysis, liquid crystals and gas sensing (Leznoff \& Lever, 1989-1996).

The molecular structure of (I) is shown in Fig. 1. Selected bond lengths and angles are given in Table 1. Compound (I) has four cyano groups. The $\mathrm{C} 7 \equiv \mathrm{~N} 1, \mathrm{C} 8 \equiv \mathrm{~N} 2, \mathrm{C} 21 \equiv \mathrm{~N} 3$ and $\mathrm{C} 22 \equiv \mathrm{~N} 4$ bond distances are 1.137 (2), 1.144 (2), 1.140 (2) and 1.138 (2) Å, respectively, showing $\mathrm{N} \equiv \mathrm{C}$ triple-bond character. These values agree well with literature values (Ocak et al., 2004).

Experimental

1,3-Benzenediol ($0.32 \mathrm{~g}, 2.91 \mathrm{mmol}$) and 4-nitrophthalonitrile (1.00 g , 5.78 mmol) were dissolved in dry dimethylformamide (40 ml) with stirring under N_{2}. Dry fine-powdered potassium carbonate (1.14 g , $8.26 \mathrm{mmol})$ was added in portions ($10 \times 1 \mathrm{mmol}$) every 10 min . The reaction mixture was stirred for 48 h at room temperature and poured into ice-water $(150 \mathrm{~g})$. The product was filtered off and washed with an NaOH solution (10%) and water until the filtrate was neutral. Recrystallization from ethanol gave a brown product (yield 0.55 g , 52.43%). Single crystals were obtained from ethanol at room temperature via slow evaporation (m.p. 458 K); elemental analysis calculated for $\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$: C 72.93, $\mathrm{H} 2.78, \mathrm{~N} 15.46 \%$; found: C 72.83, H 2.80 , N 15.56%. IR: $3090-3038\left(\mathrm{Ar}^{-\mathrm{CH}_{2}}\right), 2227$ (CN).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \\
& M_{r}=362.34 \\
& \text { Triclinic, } P \overline{1} \\
& a=8.2296(6) \AA \\
& b=8.6309(7) \AA \\
& c=13.4700(10) \AA \\
& \alpha=75.085(6)^{\circ} \\
& \beta=88.710(6)^{\circ} \\
& \gamma=77.777(6)^{\circ} \\
& V=903.10(12) \AA^{\circ}
\end{aligned}
$$

Received 28 October 2004 Accepted 5 November 2004 Online 13 November 2004

Data collection

Stoe IPDS-2 diffractometer

 ω scansAbsorption correction:
by integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.946, T_{\text {max }}=0.991$
16274 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.186$
$S=0.96$
4496 reflections
254 parameters
H -atom parameters constrained

4496 independent reflections 2856 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.155$
$\theta_{\text {max }}=28.4^{\circ}$
$h=-11 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-17 \rightarrow 17$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1113 P)^{2}\right]
$$

$$
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.134 (15)

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

O2-C15	$1.3617(18)$	C21-N3	$1.140(2)$
O2-C11	$1.4033(18)$	C8-N2	$1.144(2)$
C18-C21	$1.435(2)$	C8-C2	$1.437(2)$
C19-C22	$1.440(2)$	C22-N4	$1.138(2)$
O1-C5	$1.372(2)$	C1-C7	$1.436(2)$
O1-C9	$1.382(2)$	C7-N1	$1.137(2)$
C16-C15-C20	$121.10(14)$	C11-C12-C13	$118.26(18)$
C12-C11-C10	$121.88(15)$	C4-C5-C6	$121.33(16)$
C14-C9-C10	$121.17(17)$	C9-C14-C13	$118.67(16)$
C4-C3-C2	$120.98(16)$	C12-C13-C14	$121.50(18)$
C11-C10-C9	$118.51(16)$		
C11-O2-C15-C16	$6.1(2)$	C9-O1-C5-C6	$51.8(3)$

H atoms were positioned geometrically and refined using a riding model, with a C -H distance of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s)

Figure 1
An ORTEPIII (Burnett \& Johnson, 1996) drawing of (I), showing the atomic numbering scheme. Displacements ellipsoids of non-H atoms are shown at the 50% probability level.
used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 19999).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, $3 \& 4$. Weinheim, New York: VHC Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Moser, F. H. \& Thomas, A. L. (1983). The Phthalocyanines, Vols. 1 and 2. Boca Raton, Florida: CRC Press.
Ocak, N., Çoruh, U., Akdemir, N., Kantar, C., Ağar, E. \& Erdönmez, A. (2004). Acta Cryst. E60, o33-o34.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED 32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Takekoshi, T. (1987). Polym. J. 19, 191-202.

