Received 28 October 2004

Accepted 5 November 2004

Online 13 November 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Özlem Deveci,^a* Şamil Işık,^a Metin Yavuz,^a Nesuhi Akdemir,^b Erbil Ağar^b and Cihan Kantar^b

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit-Samsun, Turkey, and ^bOndokuz Mayıs University, Arts and Science Faculty, Department of Chemistry, 55139 Samsun, Turkey

Correspondence e-mail: odeveci@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.065 wR factor = 0.186 Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,3-Bis(3,4-dicyanophenoxy)benzene

The title compound, $C_{22}H_{10}N_4O_2$, has been designed and synthesized as a precursor of dye pigments.

Comment

The title compound, (I), is a precursor in the synthesis of network polymeric phthalocyanines and high-performance aromatic polymers (McKeown, 1998; Takekoshi, 1987). Phthalocyanines are traditionally used as dyes and pigments (Moser & Thomas, 1983). They belong to an interesting class of compounds with increasingly diverse industrial and biomedical applications, including photosensitization, linear optics, catalysis, liquid crystals and gas sensing (Leznoff & Lever, 1989–1996).

The molecular structure of (I) is shown in Fig. 1. Selected bond lengths and angles are given in Table 1. Compound (I) has four cyano groups. The C7 \equiv N1, C8 \equiv N2, C21 \equiv N3 and C22 \equiv N4 bond distances are 1.137 (2), 1.144 (2), 1.140 (2) and 1.138 (2) Å, respectively, showing N \equiv C triple-bond character. These values agree well with literature values (Ocak *et al.*, 2004).

Experimental

1,3-Benzenediol (0.32 g, 2.91 mmol) and 4-nitrophthalonitrile (1.00 g, 5.78 mmol) were dissolved in dry dimethylformamide (40 ml) with stirring under N₂. Dry fine-powdered potassium carbonate (1.14 g, 8.26 mmol) was added in portions (10 × 1 mmol) every 10 min. The reaction mixture was stirred for 48 h at room temperature and poured into ice–water (150 g). The product was filtered off and washed with an NaOH solution (10%) and water until the filtrate was neutral. Recrystallization from ethanol gave a brown product (yield 0.55 g, 52.43%). Single crystals were obtained from ethanol at room temperature *via* slow evaporation (m.p. 458 K); elemental analysis calculated for C₂₂H₁₀N₄O₂: C 72.93, H 2.78, N 15.46%; found: C 72.83, H 2.80, N 15.56%. IR: 3090–3038 (Ar-CH₂), 2227 (CN).

Crystal data

$C_{22}H_{10}N_4O_2$	Z = 2
$M_r = 362.34$	$D_x = 1.333 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 8.2296 (6) Å	Cell parameters from 16095
b = 8.6309 (7) Å	reflections
c = 13.4708 (10) Å	$\theta = 1.6-28.4^{\circ}$
$\alpha = 75.085 \ (6)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 88.710~(6)^{\circ}$	T = 293 (2) K
$\nu = 77.777 \ (6)^{\circ}$	Prism., brown
$V = 903.10 (12) \text{ Å}^3$	$0.80 \times 0.42 \times 0.10 \text{ mm}$

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Data collection

Stoe IPDS-2 diffractometer ω scans Absorption correction: by integration (*X-RED*32; Stoe & Cie, 2002) $T_{min} = 0.946, T_{max} = 0.991$ 16274 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.186$ S = 0.964496 reflections 254 parameters H-atom parameters constrained 4496 independent reflections 2856 reflections with $I > 2\sigma(I)$ $R_{int} = 0.155$ $\theta_{max} = 28.4^{\circ}$ $h = -11 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -17 \rightarrow 17$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1113P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.27 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL*97 Extinction coefficient: 0.134 (15)

Table 1

Selected geometric parameters (Å, °).

O2-C15	1.3617 (18)	C21-N3	1.140 (2)
O2-C11	1.4033 (18)	C8-N2	1.144 (2)
C18-C21	1.435 (2)	C8-C2	1.437 (2)
C19-C22	1.440 (2)	C22-N4	1.138 (2)
O1-C5	1.372 (2)	C1-C7	1.436 (2)
O1-C9	1.382 (2)	C7-N1	1.137 (2)
C16-C15-C20	121.10 (14)	C11-C12-C13	118.26 (18)
C12-C11-C10	121.88 (15)	C4-C5-C6	121.33 (16)
C14-C9-C10	121.17 (17)	C9-C14-C13	118.67 (16)
C4-C3-C2	120.98 (16)	C12-C13-C14	121.50 (18)
C11-C10-C9	118.51 (16)		
C11-O2-C15-C16	6.1 (2)	C9-O1-C5-C6	51.8 (3)

H atoms were positioned geometrically and refined using a riding model, with a C-H distance of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s)

Figure 1

An *ORTEPIII* (Burnett & Johnson, 1996) drawing of (I), showing the atomic numbering scheme. Displacements ellipsoids of non-H atoms are shown at the 50% probability level.

used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*III (Burnett & Johnson, 1996); software used to prepare material for publication: *WinGX* (Farrugia, 19999).

References

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Leznoff, C. C. & Lever, A. B. P. (1989–1996). *Phthalocyanines: Properties and Applications*, Vols. 1, 2, 3 & 4. Weinheim, New York: VHC Publishers Inc.

McKeown, N. B. (1998). *Phthalocyanine Materials: Synthesis, Structure and Function*. Cambridge University Press.

Moser, F. H. & Thomas, A. L. (1983). *The Phthalocyanines*, Vols. 1 and 2. Boca Raton, Florida: CRC Press.

Ocak, N., Çoruh, U., Akdemir, N., Kantar, C., Ağar, E. & Erdönmez, A. (2004). Acta Cryst. E60, 033–034.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.

Takekoshi, T. (1987). Polym. J. 19, 191-202.